Apprendre à programmer

10 mai 2017

Vous désirez apprendre et/ou apprivoiser un langage de programmation, un système d’exploitation, une base de données, un shell, etc ?  Vous y songez sérieusement mais vous craignez d’avoir à installer une tonne de trucs sur votre ordinateur pour satisfaire votre curiosité?  Vous y songez mais, malheureusement, ce que vous désirez n’est pas disponible pour votre système d’exploitation?  Vous y songez mais l’installation de tout ce qu’il vous faudrait vous semble compliquée?

Ne cherchez plus! TutorialsPoint.com vous offre l’environnement en ligne CodingGround !  Tous les environnements en ligne ainsi que les tutoriels en ligne sont gratuits en plus!

Qu’est-ce que CodingGround ?  C’est un environnement de développement minimal en ligne vous permettant d’éditer, de compiler et d’exécuter du code.  C’est une machine virtuelle qui vous offre aussi un shell Linux et un browser (pour tester votre PHP, HTML ou CCS par exemple). Pour les environnements qui le supportent, il est également possible de changer les options de compilation. On peut aussi ouvrir simultanément plusieurs fichiers source, scripts, shells, browsers, etc.

CodingGround vous offre en plus de sauvergarder, importer, exporter, partager et lire tous vos projets avec GitHub, DropBox, OneDrive et GoogleDrive!  Vous pouvez aussi simplement garder tous vos projets sur votre ordinateur!

Quels sont les langage de programmation, les systèmes d’exploitation, les bases de données, les outils de développements que CodingGround offre?  Une tonne!

Liste des terminaux (shell) en ligne

Liste des IDE en ligne

 

 

 

 

 

Publicités

Mu, sigma & friends

1 mai 2017

You’re a programmer and sometimes you need some statistical tools and knowledge?  Here’s a short list of resources that could be helpful to you.


That guy

3 avril 2017

We all know that guy. You know, that guy who sees performance improvements everywhere, all the time?

That programmer who squeezes everything into bitmaps because « it’s so much faster » ?  And when I say everything, I mean everything! Even if your class only has one flag!

That guy who caches everything in the application because « that’s the optimal way to do it« ?  Even if the data that is cached is just accessed only one time?

That guy who fits a date into an integer in the database because « it’s so much more compact » ?  There goes all your SQL and date functions!

That developer who always ends up re-implementing another sorting algorithm because he read a « great paper » on the subject and « it’s proven that it’s 0.2% faster than the default sort » available?  And after an insane debugging session, you finally realize he has overriden SortedCollection>>#sort: ?  And that his code just doesn’t work properly!

You know, that guy with a C/C++ background who spends countless hours optimizing everything not realizing he has to « make it work » first! You know, that guy who still doesn’t get that often times you only need to optimize very small parts of an application to make a real difference?

You know that guy with strange concepts such as « defensive programming » who tells you nobody ever caught a bug in his code in production? You know, that guy who came up with the « clever » catch-everything method #ifTrue:ifFalse:ifNil:onError:otherwise: ?

You know that guy who never works for more than 4 months at the same place because « they didn’t get it, they’re a bunch of morons » ?

You know, that guy who prefers to implement complex database queries with a #do: loop and a gazillion SELECT statement because « SELECT statements with a 1-row lookup are very optimized by the database server » instead of using JOINs. And then he blames the slow response time of his « highly optimized » data retrieval code on the incompetence of the DBAs maintaining the database?

You know, that guy who once told me « inheritance in Smalltalk is very bad because the deeper the class in the hierarchy, the slower the method lookup is going to be » so that’s why he always preferred « flattened hierarchies » (meaning promoting ALL instance variables into one root class) with 2-3 levels deep in the worst case? « Besides, my code is easier to understand and debug since everything is in one place« .

Well, I was going through some of the sh*ttiest code I’ve seen in a long time last night and I remembered that guy and his ideas about « highly optimized flattened hierarchies » and thought I’d measure his theory!  Here’s the script.

Basically, it creates a hierarchy of classes (10000 subclasses) and times message sends from the top class and the bottom class to measure the difference.

Well, that guy was right… There’s a 1 millisecond difference over 9 million message sends from the root class as compared to the 10000th class at the bottom of the hierarchy.

I wanted to tell that guy he was right but his email address at work is probably no longer valid…

CAVEAT: Make sure you do not have a category with the same name as the one in the script because the script removes the category at the end (and all classes in it!).  Also, be warned it takes a very very very long time to execute!

P.S. All the stories above are real. No f*cking kidding!  Those guys really existed : I’ve worked with them!


The order of indexes

28 février 2017

If you thought all you had to do was to declare a few indexes here and there and MySQL would magically be fast, you’ll be surprised reading this excellent article.


The patch

28 février 2017

Have you ever asked yourself why program fixes are called « patches »?  I never did.  I’ve never known why a code fix was called a patch either.  Now I know why!

the_patch


Compiler magic

22 février 2017

How do you efficiently divide by 19? All you need is some compiler magic!  It’s all explained here!


1001001 SOS

10 février 2017

bitcounting

I’ve been dealing a lot with bit operations lately.  And doing lots of benchmarking, like here. As I was looking for a bit count method in Pharo (it used to be there but it no longer exists in Pharo 5.0), I got curious about the many different versions of bit counting algorithms I could find on the internet.

What’s so special about bit operations you ask?  Not much.  Except when you have to do it really fast on 64bit integers!  Like in a chess program!  Millions of times per position. So instead of copying the #bitCount method that was in Squeak, I decided I’d have a look at what is available on the net…

So I decided to share what I found.  This could potentially be useful for people who have to deal with bit counting a lot. Especially if you deal with 14 bits or less!

Here’s a typical run of the different bit counting algorithms I have tested on Squeak 5.1 64bit.

Number of [myBitCount1 (128 bits)] per second: 0.061M
Number of [myBitCount1 (14 bits)] per second: 1.417M
Number of [myBitCount1 (16 bits)] per second: 1.271M
Number of [myBitCount1 (30 bits)] per second: 0.698M
Number of [myBitCount1 (32 bits)] per second: 0.651M
Number of [myBitCount1 (60 bits)] per second: 0.362M
Number of [myBitCount1 (64 bits)] per second: 0.131M
Number of [myBitCount1 (8 bits)] per second: 2.255M
Number of [myBitCount2 (128 bits)] per second: 0.286M
Number of [myBitCount2 (14 bits)] per second: 3.623M
Number of [myBitCount2 (16 bits)] per second: 3.630M
Number of [myBitCount2 (30 bits)] per second: 2.320M
Number of [myBitCount2 (32 bits)] per second: 2.336M
Number of [myBitCount2 (60 bits)] per second: 1.415M
Number of [myBitCount2 (64 bits)] per second: 1.208M
Number of [myBitCount2 (8 bits)] per second: 4.950M
Number of [myBitCount3 (128 bits)] per second: 0.498M
Number of [myBitCount3 (14 bits)] per second: 4.556M
Number of [myBitCount3 (16 bits)] per second: 4.673M
Number of [myBitCount3 (30 bits)] per second: 3.401M
Number of [myBitCount3 (32 bits)] per second: 3.401M
Number of [myBitCount3 (60 bits)] per second: 2.130M
Number of [myBitCount3 (64 bits)] per second: 1.674M
Number of [myBitCount3 (8 bits)] per second: 4.938M
Number of [myBitCount4 (128 bits)] per second: 0.041M
Number of [myBitCount4 (14 bits)] per second: 5.333M
Number of [myBitCount4 (16 bits)] per second: 4.819M
Number of [myBitCount4 (30 bits)] per second: 2.841M
Number of [myBitCount4 (32 bits)] per second: 2.674M
Number of [myBitCount4 (60 bits)] per second: 1.499M
Number of [myBitCount4 (64 bits)] per second: 0.270M
Number of [myBitCount4 (8 bits)] per second: 7.435M
Number of [myBitCount5 (128 bits)] per second: 0.377M
Number of [myBitCount5 (14 bits)] per second: 3.937M
Number of [myBitCount5 (16 bits)] per second: 3.035M
Number of [myBitCount5 (30 bits)] per second: 2.137M
Number of [myBitCount5 (32 bits)] per second: 2.035M
Number of [myBitCount5 (60 bits)] per second: 1.386M
Number of [myBitCount5 (64 bits)] per second: 1.188M
Number of [myBitCount5 (8 bits)] per second: 4.167M
Number of [myBitCount6 (128 bits)] per second: 0.381M
Number of [myBitCount6 (14 bits)] per second: 5.195M
Number of [myBitCount6 (16 bits)] per second: 3.552M
Number of [myBitCount6 (30 bits)] per second: 2.488M
Number of [myBitCount6 (32 bits)] per second: 2.364M
Number of [myBitCount6 (60 bits)] per second: 1.555M
Number of [myBitCount6 (64 bits)] per second: 1.284M
Number of [myBitCount6 (8 bits)] per second: 5.571M
Number of [myPopCount14bit (14 bits)] per second: 18.349M
Number of [myPopCount14bit (8 bits)] per second: 18.519M
Number of [myPopCount24bit (14 bits)] per second: 7.407M
Number of [myPopCount24bit (16 bits)] per second: 7.463M
Number of [myPopCount24bit (8 bits)] per second: 7.018M
Number of [myPopCount32bit (14 bits)] per second: 4.963M
Number of [myPopCount32bit (16 bits)] per second: 5.013M
Number of [myPopCount32bit (30 bits)] per second: 4.608M
Number of [myPopCount32bit (32 bits)] per second: 4.619M
Number of [myPopCount32bit (8 bits)] per second: 4.608M
Number of [myPopCount64a (14 bits)] per second: 2.778M
Number of [myPopCount64a (16 bits)] per second: 2.793M
Number of [myPopCount64a (30 bits)] per second: 2.751M
Number of [myPopCount64a (32 bits)] per second: 2.703M
Number of [myPopCount64a (60 bits)] per second: 2.809M
Number of [myPopCount64a (64 bits)] per second: 1.385M
Number of [myPopCount64a (8 bits)] per second: 2.755M
Number of [myPopCount64b (14 bits)] per second: 3.063M
Number of [myPopCount64b (16 bits)] per second: 3.096M
Number of [myPopCount64b (30 bits)] per second: 3.106M
Number of [myPopCount64b (32 bits)] per second: 3.053M
Number of [myPopCount64b (60 bits)] per second: 3.008M
Number of [myPopCount64b (64 bits)] per second: 1.444M
Number of [myPopCount64b (8 bits)] per second: 3.091M
Number of [myPopCount64c (14 bits)] per second: 1.625M
Number of [myPopCount64c (16 bits)] per second: 1.600M
Number of [myPopCount64c (30 bits)] per second: 1.542M
Number of [myPopCount64c (32 bits)] per second: 1.529M
Number of [myPopCount64c (60 bits)] per second: 1.566M
Number of [myPopCount64c (64 bits)] per second: 1.082M
Number of [myPopCount64c (8 bits)] per second: 3.945M

Now, since method #myBitCount2 is similar to the #bitCount method in Squeak, that means there is still place for improvement as far as a faster #bitCount is needed.  Now the question is : do we optimize it for the usual usage (SmallInteger), for 64bit integer or we use an algorithm that performs relatively well in most cases?  Obviously, since I will always be working with 64bit positive integers, I have the luxury to pick a method that precisely works best in my specific case!

All test code I have used can be found here.

Note: Rush fans have probably noticed the reference in the title…